Supergene mineral assemblage from sediments affected by contact and hydrothermal metamorphism, locality Dobrá – Staré Město near Frýdek-Místek (Czech Republic)

 

Dalibor Matýsek, Jakub Jirásek

Geoscience Research Reports 56, 2023, pages 89–99

Full text (PDF, 6.75 MB)

Published online: 2024-02-29

Export to RIS

 

Abstract

At locality Dobrá – Staré Město, series of outcrops occur on both banks of the Morávka River. The river cuts through the sediments on the tectonic contact between the Silesian and Subsilesian units of the Outer Western Carpathians. Clayey facies of the Hradiště Formation (Early Cretaceous, Valanginian to Aptian) contains numerous tectonic fragments reaching hundreds meters in size of strongly altered (carbonatized, smectitized) subaquatic volcanic rocks of the Teschenite Association. These volcanic rocks are dominated by fine-grained to aphanitic rocks, possibly of both effusive and intrusive origin. The host sediments affected by the contact metamorphism (contact adinole) also occur. Framboidal pyrite is abundant in majority of sediments of the studied area, giving rise to efflorescences of gypsum, baryte, celestine, and a mineral of alunite group (Figure 1). A more varied assemblage of supergene minerals was recognized on a small rock outcrop at GPS coordinates N 49° 39.992’ E 018° 23.810’ (Figure 2), where it developed relatively recently after the big floods in 2010 that washed away the previous mineralization. During the first years, only gypsum crusts were detectable, while in 2023, we recognized 4 macroscopic and 5 microscopic minerals forming thin botryoidal crusts. These crusts show faint zoning, with gooey, gel-like X-ray amorphous material in the humid upper part , middle zone with abundant fibroferrite and the lower part dominated by gypsum.

Gypsum forms well-developed, but frequently corroded crystals with various habitus (Figure 4A, B). Fibroferrite is present as fibrous aggregates with individual crystals of up to ca. 100–150 µm long and <1 µm thick (Figure 4C). It forms directly from the gel-like substance (Figure 4D). Rhombohedral crystals and rossete aggregates of hydroniumjarosite vary from 2 µm to 5 µm in size (Figure 4E), but the most common are dust-like coatings on rock fissures with particle size <1 µm. Rusty coatings of schwertmannite (Figure 4F), in some places accompanied by gypsum, with Fe/S at. % ratios near 4–5 are common. In some cases, the Al/Fe at. % ratio exceed 1, which might indicate presence of yet undescribed Al-analogue of schwertmannite, ill-defined alumogel, or an amorphous precursor of aluminite. Presence of ferrihydrite is possible but not confirmed. The above-mentioned Fe-rich phases are frequently accompanied by diplobacilli-shaped bacteria (Figure 4F). Slavíkite, pickeringite-halotrichite, alunogen, copiapite group mineral, hexahydrite, and melanterite (Figure 5) were also recognized by EDS and PXRD. Slavíkite and copiapite group minerals seem to be alteration products of fibroferrite. Unit-cell parameters refined from the X-ray powder diffraction are presented for all recognized phases (Table 1).

Surprisingly, secondary sulfates are present on the metasediments with abundant calcite (Figure 3), which should serve as a neutralization buffer. The reason is the restricted amount of calcite available on the rock fissure surfaces, and water infiltration partially blocked by newly-formed gypsum. The albite in contact adinole (Figure 3) is unaffected by the acid rock drainage, since Na ions are not present in significant quantities in supergene phases. Since there is still enough available unaltered pyrite, we expect a shift towards more stable mineral assemblage in future. The limited amount of secondary sulfates does not present any significant harm to the environment.


 

References

BALLIRANO, P. (2006): Crystal chemistry of the halotrichite group XAl2(SO4)4 · 22H2O: The X = Fe-Mg-Mn-Zn compositional tetrahedron. – Eur. J. Mineral. 18(4), 463–469.

Basciano, L. C. – Peterson, R. C. (2007): Jarosite-hydronium jarosite solid-solution series with full iron occupancy: Mineralogy and crystal chemistry. – Am. Mineral. 92, 1464–1473.

Basciano. L. C. – Peterson, R. C. (2008): Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy. – A. Mineral. 93, 853–862.

Brady, K. B. C. – Kania, T. – Smith, M. W. – Horberger, R. J. (1998): Coal mine drainage prediction and pollution prevention in Pennsylvania. – 398 str. Pennsylvania Dept. of Environ. Protection. Harrisburg, Pennsylvania.

Brophy, G. P. – Sheridan, M. F. (1965): Sulfate studies IV: The jarosite–natrojarosite–hydronium jarosite solid solution series. – Am. Mineral. 50 (10), 1595–1607.

Crawotta, C. A. (1993): Secondary iron-sulfate minerals as sources of sulfate and acidity. In: Alpers, C. N., Blowes, D. W., ed.: Environmental geochemistry of sulfide oxidation, 345–364. – ACS symposium series 550, American Chem. Soc. Washington DC.

D’Orazio, M. – Mauro, D. – Valerio, M. – Biagioni, C. (2021): Secondary sulfates from the Monte Arsiccio Mine (Apuan Alps, Tuscany, Italy): trace-element budget and role in the formation of acid mine drainage. – Minerals 11 (2), 206.

Dos Santos, E. C. – de Mendonca Silva – J. C., Duarte, H. A. (2016): Pyrite oxidation mechanism by oxygen in aqueous medium. - J. Phys. Chem. C 120, 2760-2768.

Eliáš, M. (1970): Litologie a sedimentologie slezské jednotky v Moravskoslezských Beskydech. – Sbor. geol. Věd, Ř. G. 18, 7–99.

Eliáš, M. (1998): Sedimentologie podslezské jednotky. – Czech geol. Surv. Spec. Pap. 8, 1–48.

Evangelou, V. P. – Zhang, Y. L. (1995): A review: Pyrite oxidation mechanisms and acid mine drainage prevention. – Crit. Rev. Env. Sci. Tec. 25 (2), 141–199.

Fang, J. H. – Robinson, P. D. (1976): Alunogen, Al2(H2O)12(SO4)3 .5H2O; its atomic arrangement and water content. – Am. Mineral. 61 (3–4), 311–317.

Fettes, D. – Desmonds, J. (2007): Glossary. In: Fettes, D. – Desmonds, J., ed.: Metamorphic rocks: A classification and glossary of terms, 111–204. – Cambridge Univ. Press. Cambridge.

Hammarstrom, J. M. – Seal , R. R. – Meier, A. L. – Kornfeld, J. M. (2005): Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. – Chem. Geol. 215 (1–4), 407–431.

ICDD (2022): PDF-2 Release 2022 (Database). – International Centre for Diffraction Data. Pennsylvania.

Jerz, J. K. – Rimstidt, J. D. (2003): Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact. – Am. Mineral. 88, 1919–1932.

Knight, K. S. – Stetton, L. C. – Schofield, F. P. (1999): Temperature evolution between 50 K and 320 K of the thermal expansion tensor of gypsum derived from neutron powder diffraction data. – Phys. Chem. Miner. 26(6), 477–483.

Košek, F. – Culka, A. – Žáček, V. – Laufek, F. – Škoda, R. – Jehlička, J. (2018): Native alunogen: A Raman spectroscopic study of a well-described specimen. – J. Mol. Struct. 1157, 191–200.

Kroča, J. (2016): Divočící řeka Morávka – dynamické, stabilní a ohrožené prostředí. – Ochr. Přír. 6, 24–27.

Majzlan, J. (2020): Processes of metastable-mineral formation in oxidation zones and mine waste. – Mineral. Mag. 84, 367–375.

Majzlan, J. – Dachs, E. – Benisek, A. – Plášil, J. – Sejkora, J. (2018): Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. – Eur. J. Mineral. 30, 259–275.

Matýsek, D. – Jirásek, J. (2023): Corrensite and associated smectites in the Teschenite Association Rocks from the Podbeskydí Area (Czech Republic and Poland). – App. Clay Sci. 243, 107067.

Matýsek, D. – Jirásek, J. – Skupien, P. (2022): Formation of baryte and celestine during supergene processes on sedimentary rock outcrops. – Int. J. Earth Sci. 111, 623–639.

Mauro, D. – Biagioni, C. – Pasero, M. (2018): Crystal chemistry of sulfates from Apuan Alps (Tuscany, Italy). I. Crystal structure and hydrogen bond system of melanterite, Fe(H2O)6(SO)4 · 2H2O. – Period. di Mineral. 87, 89–96.

Menčík, E. – Adamová, M. – Dvořák, J. – Dudek, A. – Jetel, J. – Jurková, A. – Hanzlíková, E. – Houša, V. – Peslová, H. – Rybářová, L. – Šmíd, B. – Šebesta, J. – Tyráček, J. – Vašíček, Z. (1983): Geologie Moravskoslezských Beskyd a Pod-beskydské pahorkatiny. – 307 str. Academia. Praha.

Moncur, M. C. – Ptacek, C. J. – Blowes, D. W. (2015): The occurrence and implications of efflorescent sulfate salts at the former Sherritt-Gordon Zn-Cu mine, Sherridon, Manitoba, Canada. – Can. Mineral. 53 (5), 961–977.

Paktunc, A. D. (1999): Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. – Environ. Geol. 39, 103–112.

Parafiniuk, J. – Dobrzycki, Ł. – Woźniak, K. (2010): Slavíkite – Revision of chemical composition and crystal structure. – Am. Mineral. 95, 11–18.

Pedersen, B. – Semmingsen, D. (1982): Diffraction refinement of the structure of gypsum, CaSO4 . 2H2O. – Acta Crystallogr. B 38 (4), 1074–1077.

Rimstidt, J. D. – Vaughan, D. J. (2003): Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. – Geochim. Cosmochim. Acta 67 (5), 873–880.

Sejkora, J. – Špalek, J. – Macek, I. – Malíková, R. (2014): Fibroferrit z historické lokality Valachov (Skřivaň) u Rakovníka (Česká republika). – Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 22 (2), 371–375.

Sidenko, N. V. – Pospelova, L. N. – Stolpovskaya, V. N. (1998): Secondary minerals and compounds of toxic elements precipitated from drainage water of Berikul sulphide wastes. – Mineral. Mag. 62A, 1398–1399.

Skupien, P. – Pavluš, J. (2013): Příspěvek k poznání stratigrafické pozice magmatitů těšínitové asociace ve slezské jednotce. – Geol. Výzk. Mor. Slez. 20 (1–2), 96–99.

Stráník, Z. – Bubík, M. – Gilíková, H. – Tomanová Petrová, P., ed. (2021): Geologie Vnějších Západních Karpat a jihovýchod-ního okraje Západoevropské platformy v České republice. – 319 str. Čes. geol. služba. Praha.

Süsse, P. (1972): Crystal structure and hydrogen bonding of copiapite. – Z. Kristallogr. 135 (1–2), 34–55.

Süsse, P. (1973): Slavikit: Kristallstruktur und chemische Formel. – Neues Jb. Miner. Monat. 2, 93–95.

Škarpich, V. – Galia, T. – Hradecký, J. – Ruman, S. (2016): Štěrkonosná řeka Morávka – mizející fenomén naší krajiny. – Ochr. Přír. 6, 6–9.

Škarpich, V. – Hradecký, J. – Dušek, R. (2013): Complex transformation of the geomorphic regime of channels in the forefield of the Moravskoslezské Beskydy Mts.: case study of the Morávka River (Czech Republic). – Catena 111, 25–40.

Šmíd, B. (1978): Výzkum vyvřelých hornin těšínitové asociace. – MS rigorózní práce, Přírodověd. fak. Univ. Karl. Praha.

Ventruti, G. – Ventura, G. D. – Bellatreccia, F. – Lacalamita, M. – Schingaro, E. (2016): Hydrogen bond system and vibrational spectroscopy of the iron sulfate fibroferrite, Fe(OH)SO4 . 5H2O. – Eur. J. Mineral. 28, 943–952.

Warr, L. N. (2021): IMA–CNMNC approved mineral symbols. – Mineral. Mag. 85 (3), 291–320.

Zalkin, A. – Ruben, H. – Templeton, D. H. (1964): The crystal structure and hydrogen bonding of magnesium sulfate hexahydrite. – Acta Crystallogr. 17, 235–240.